Regulation of fatty acid oxidation in skeletal muscle.

نویسندگان

  • B B Rasmussen
  • R R Wolfe
چکیده

Researchers using animals are beginning to elucidate the control of fatty acid metabolism in muscle at the molecular and enzymatic level. This review examines the physiological data that has been collected from human subjects in the context of the proposed control mechanisms. A number of factors, including the availability of free fatty acids and the abundance of fatty acid transporters, may influence the rate of muscle fatty acid oxidation. However, the predominant point of control appears to be the rate at which fatty acyl-coenzyme A is transported into the mitochondria by the carnitine palmitoyl transferase system. In turn, evidence suggests that the intracellular concentration of malonyl-coenzyme A in muscle is an important regulator of carnitine palmitoyl transferase-I activity. Malonyl-coenzyme A is increased by glucose, which is likely the mechanism whereby glucose intake suppresses the transfer of fatty acids into the mitochondria for subsequent oxidation. In contrast, malonyl-coenzyme A levels decrease during exercise, which enables increased fatty acid oxidation. However, for any given carnitine palmitoyl transferase-I activity, there may be an effect of free fatty acid availability on fatty acid oxidation, particularly at low levels of free fatty acids. Nonetheless, the rate of glucose or glycogen metabolism is probably the primary regulator of the balance between glucose and fatty acid oxidation in muscle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men

High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...

متن کامل

Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle.

Malonyl-CoA functions as a mediator in the hypothalamic sensing of energy balance and regulates the neural physiology that governs feeding behavior and energy expenditure. The central administration of C75, a potent inhibitor of the fatty acid synthase (FAS), increases malonyl-CoA concentration in the hypothalamus and suppresses food intake while activating fatty acid oxidation in skeletal musc...

متن کامل

Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids.

Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, an important modulator of fatty acid oxidation. We hypothesized that increased fatty acid availability would increase the expression and activity of heart and skeletal muscle MCD, thereby promoting fatty acid utilization. The results show that high-fat feeding, fasting, and streptozotocin-induced diabetes all significantl...

متن کامل

Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals.

A reduction in fatty acid (FA) oxidation has been associated with lipid accumulation and insulin resistance in skeletal muscle of obese individuals. Numerous reports suggest that the reduction in FA oxidation may result from intrinsic mitochondrial defects, although little direct evidence has been offered to support this conclusion. This brief review summarizes recent work from our laboratory t...

متن کامل

Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women.

A reduction in fatty acid oxidation has been associated with lipid accumulation and insulin resistance in the skeletal muscle of obese individuals. We examined whether this decrease in fatty acid oxidation was attributable to a reduction in muscle mitochondrial content and/or a dysfunction in fatty acid oxidation within mitochondria obtained from skeletal muscle of age-matched, lean [body mass ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Endocrinology

دوره 149 3  شماره 

صفحات  -

تاریخ انتشار 1999